Quantitative information architecture, granular computing and rough set models in the double-quantitative approximation space of precision and grade
نویسندگان
چکیده
Because precision and grade act as fundamental quantitative information in approximation space, they are used in relative and absolute quantifications, respectively. At present, the double quantification regarding precision and grade is a novel and valuable subject, but quantitative information fusion has become a key problem. Thus, this paper constructs the double-quantitative approximation space of precision and grade (PG-Approx-Space) and tackles the fusion problem using normal logical operations. It further conducts double-quantification studies on granular computing and rough set models. (1) First, for quantitative information organization and storage, we construct space and plane forms of PG-Approx-Space using the Cartesian product, and for quantitative information extraction and fusion, we establish semantics construction and semantics granules of PG-ApproxSpace. (2) Second, by granular computing, we investigate three primary granular issues: quantitative semantics, complete system and optimal calculation. Accordingly, six types of fundamental granules are proposed based on the semantic, microscopic and macroscopic descriptions; their semantics, forms, structures, calculations and relationships are studied, and the granular hierarchical structure is achieved. (3) Finally, we investigate rough set models in PG-Approx-Space. Accordingly, model regions are proposed by developing the classical regions, model expansion is systematically analyzed, some models are constructed as their structures are obtained, and a concrete model is provided. Based on the quantitative information architecture, this paper systematically conducts and investigates double quantification and establishes a fundamental and general exploration framework. 2013 Published by Elsevier Inc.
منابع مشابه
Two basic double-quantitative rough set models of precision and grade and their investigation using granular computing
The precision and grade of the approximate space are two fundamental quantitative indexes that measure the relative and absolute quantitative information, respectively. The double quantification of the precision and grade is a relatively new subject, and its effective implementation remains an open problem. This paper approaches the double quantifica-tion problem using basic rough set models. T...
متن کاملSYSTEM MODELING WITH FUZZY MODELS: FUNDAMENTAL DEVELOPMENTS AND PERSPECTIVES
In this study, we offer a general view at the area of fuzzy modeling and fuzzymodels, identify the visible development phases and elaborate on a new and promisingdirections of system modeling by introducing a concept of granular models. Granularmodels, especially granular fuzzy models constitute an important generalization of existingfuzzy models and, in contrast to the existing models, generat...
متن کاملUncertainty analysis of hierarchical granular structures for multi-granulation typical hesitant fuzzy approximation space
Hierarchical structures and uncertainty measures are two main aspects in granular computing, approximate reasoning and cognitive process. Typical hesitant fuzzy sets, as a prime extension of fuzzy sets, are more flexible to reflect the hesitance and ambiguity in knowledge representation and decision making. In this paper, we mainly investigate the hierarchical structures and uncertainty measure...
متن کاملROUGH SET OVER DUAL-UNIVERSES IN FUZZY APPROXIMATION SPACE
To tackle the problem with inexact, uncertainty and vague knowl- edge, constructive method is utilized to formulate lower and upper approx- imation sets. Rough set model over dual-universes in fuzzy approximation space is constructed. In this paper, we introduce the concept of rough set over dual-universes in fuzzy approximation space by means of cut set. Then, we discuss properties of rough se...
متن کاملGeneralized multigranulation double-quantitative decision-theoretic rough set
The principle of the minority subordinate to the majority is the most feasible and credible when people make decisions in real world. So generalized multigranulation rough set theory is a desirable fusion method, in which upper and lower approximations are approximated by granular structures satisfying a certain level of information. However, the relationship between a equivalence class and a c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Sci.
دوره 268 شماره
صفحات -
تاریخ انتشار 2014